Fourier transformation
Spectral Analysis
Fractal Dimension

How to Cite

Ali, N. (2022). FRACTAL PARAMETERS OF SLUM SETTLEMENTS: WAVE-SPECTRUM ANALYSIS (STUDY OF KARACHI). Global Journal for Management and Administrative Sciences, 3(3), 83–100.


Fractal parameters of slum settlements, such as those in Karachi, can provide valuable insights into these communities' spatial organization and growth patterns. In this research, considering the slum areas or Kachi Abadies (KAs) as an ‘urban malignancy,’ the spectral (spectrum) analysis method and the Fourier transform are used to analyze the patterns of population distribution in Karachi city based on its spatial dynamics. The study uses mathematical experiments and empirical analysis to calculate the fractal dimension for exploring urban fractal parameter relationships form and growth. The population data and land use data of Karachi Kachi Abadis (KKAs) are used to attain the numerical values of all parametric relations. The calculated results showed a close numerical coherence.


Anderson, W. A. D. (1961). Pathology Fourth Edition (CV Mosby Company, St. Louis).

Arlinghaus, S. L. (1985). Fractals take a central place. Geografiska Annaler: Series B, Human Geography, 67(2), 83-88.

Bak, P., (1996)., How Nature Works. The Science of Self-Organized Criticality, Springer, New York, NY, USA.

Barnsley, M. F., Devaney, R. L., Mandelbrot, B. B., Peitgen, H. O., Saupe, D., Voss, R. F., & McGuire, M. (1988). The science of fractal images 1, 312. New York: Springer.

Barnsley, M. F., Devaney, R. L., Mandelbrot, B. B., Peitgen, H. O., Saupe, D., Voss, R. F., & Voss, R. F. (1988). Fractals in nature: from characterization to simulation (pp. 21-70). Springer New York.

Batty, M. (2008). The size, scale, and shape of cities. science, 319(5864), 769-771.

Batty, M., & Longley, P. A. (1994). Fractal cities: a geometry of form and function. Academic press.

Batty, Michael, and Paul A. Longley. "Urban shapes as fractals." Area (1987): 215-221.

Benguigui, L., & Daoud, M. (1991). Is the suburban railway system a fractal? Geographical Analysis, 23(4), 362-368.

Bloomfield, P. (2004). Fourier analysis of time series: an introduction. John Wiley & Sons.Einstein,

Chen, Y. (2008). A wave-spectrum analysis of urban population density: entropy, fractal, and spatial localization. Discrete dynamics in nature and society, 2008.

Chen, Y. (2010). Exploring the fractal parameters of urban growth and form with wave-spectrum analysis. Discrete Dynamics in Nature and Society, 2010.

Chen, Y., & Zhou, Y. (2003). The rank-size rule and fractal hierarchies of cities: mathematical models and empirical analyses. Environment and Planning B: Planning and Design, 30(6), 799-818.

Chen, Y., & Zhou, Y. (2008). Scaling laws and indications of self-organized criticality in urban systems. Chaos, Solitons & Fractals, 35(1), 85-98.

Clark, C. (1951). Urban population densities. Journal of the Royal Statistical Society. Series A (General), 114(4), 490-496.

Courtat, T., Gloaguen, C. & Douady, S. (2011)., “Mathematics and morphogenesis of city,A Geometric approach”, 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13, France

Einstein, A. (1948). Quanten‐mechanik und wirklichkeit. Dialectica, 2(3‐4), 320-324.

Feder, J. (1988). Fractals (physics of solids and liquids): Plennum. New york.

Feng, J. (2002). Modeling the spatial distribution of urban population density and its evolution in Hangzhou. Geographical research, 21(5), 635-646.

Fotheringham, A. S., Batty, M., & Longley, P. A. (1989, December). Diffusion-limited aggregation and the fractal nature of urban growth. In Papers of the Regional Science Association, 67(1), 55-69. Berlin/Heidelberg: Springer-Verlag.

Fractals, J. F. (1988)., Plenum Press, New York, NY, USA.

Frankhauser, P. (1994). La fractalité des structures urbaines. sl: Economica.

Frankhauser, P. (2015). From fractal urban pattern analysis to fractal urban planning concepts. Computational approaches for urban environments, 13-48.

Griffith, D. A., & Griffith, D. A. (2003). Spatial filtering, 91-130. Springer Berlin Heidelberg.

Hern, W. M. (2008). Urban malignancy: similarity in the fractal dimensions of urban morphology and malignant neoplasms. International journal of anthropology, 23(1-2), 1-19.

Hurst, H. E. (1965). Long term storage. An experimental study.

Liu, S. D. & Liu, S. K. (1992)., An Introduction to Fractals and Fractal Dimension, China Meteorological Press, Beijing, China.

Liu, S. D. & Liu, S. K., (1993)., An Introduction to Fractals and Fractal Dimension,Weather Press, Beijing, China.

Longley, P. A., Batty, M., & Shepherd, J. (1991). The size, shape and dimension of urban settlements. Transactions of the institute of British Geographers, 75-94.

Liu, S. D. & Liu, S. K. (1994)., Solitary Wave and Turbulence, Shanghai Scientific and Technological Education, Shanghai.

Mandelbrot, B. B. (1983). The fractal geometry of Nature WH Freeman and Company. New York, 8, 406-406.

Mandelbrot, B. B. (2013). Multifractals and 1/ƒ noise: Wild self-affinity in physics (1963–1976). Springer.

Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM review, 10(4), 422-437.

Saupe, D. (1991). Random fractals in image synthesis. Fractals and Chaos, 89-118.

Smeed, R. J. (1963). Road development in urban areas. Journal of the Institution of Highway Engineering, 10, 5-30.

Takayasu, H. (1990). Fractals in the physical sciences. Manchester University Press.

Wang, F., & Zhou, Y. (1999). Modelling urban population densities in Beijing 1982-90: Suburbanization and its causes. Urban studies, 36(2), 271-287.

White, R., & Engelen, G. (1993). Fractal urban land use patterns: A cellular automata approach. Environment and Planning A, 25(8), 1175-1199.

Zhu, T. J. (1991). Integral Transform in Engineering Mathematics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2022 Mr Nisar Ali